© AD-A248 845

. LI RR R

ITATION PAGE

Form Approved
OMB No. 0704-0188

EPOR! 38LURII T LLASSIFICATION u I I‘

Jnclassified

10 RESTRICTIVE MARKINGS

None
3. DISTRIBUTION / AVAILABILITY OF REPORT

Unlimited

§ MONITORING ORGANIZATION REPORT NUMBER(S)

AME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
(" applicable)

rester Polytechnic Institute

78 NAME OF MONITORING ORGANIZATION ]

U.S. Army Materials Technology Laboratory

DDRESS (Crty, Stete, and 2IP Code)

(00 Institute Road
Jjorcester, MA 01609

7b. ADDRESS (Crty, State, ang 2iP Code)
Watertown, MA 02172

AME OF FUNDING / SPONSORING 8> OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
PLGANIZATIGN (M applicable) D 04-90~C=0024

. Group SLCMT~MRM

DDRESS (City, State, 8nd 2iP CoCe) 10 SOURCE OF FUNDING NUMBERS

5, Arny Materials Technolo Laborator PROGRAM PROJECT TASK WORK UNIT

: ertowry“ MA 02172 &y y ELEMENT NO. [ NO. NO. ACCESSION NO. l

TLF (inclucie Security Ciasgsification)

Jitrascund NDE of Adhesive Bond Integrity: A Quantitative Measure

ERSONAL THOR(S)

einhold and Sullivan, John M.

TYPE OF REPORT 13b. TIME COVERED
Final Report erom 8/17/90 v08/18/61

15. PAGE COUNT
81

14 DATE OF REPORT (Year, Month, Dey)
1992,02.28

JPPLEMENTARY NOTATION

A4

COsa%i CODES
GROUP SUB-GROUP

1ELD

18, SUBJECT TERMS (Continue on reverse f necessary and identify by block number)

Ultrasonic NDE, Contact Transducer, Signal Processing,
Chirp-Z Transform, Adaptive Filtering, Least Squares,

Deconvolution, Bondline Transfer Function

BSTRACT (Cortinue on reverse if necessery and dentify by block number)

'ee sttached sheet.

98 4 l6 Lol

92-09853
LI

g

HSTRIBUTION / AVAILABILITY OF ASSTRACT 21. ABSTRACT SECURITY CLASSIFICATION ]
UNCLASSIFIEDAUNLIMITED £ sami as meT. O omc users Unclassified

NANM® OF RESPONSIBLE INDIVIDUAL 22b TELEPMONCE (includle Area Code) | 22¢ OFFICE SYMBO.

Robert Anastasi (€17) 923-5241 SLCOMT-MRM

prm 1473, JUN 86 Previous eaitions are obsolete CURITY CLA TION OF THIS PA




I: SUMMARY

The objective of this research was to investigate and develop a coupled
approach (analytical, numerical and experimental) to the ultrasonic
nondestructive evaluation of adhesive bond integrity. Results of these
studies were directed toward nondestructive evaluation (NDE) of the integ-
rity of adhesive bonds and bondlines for advanced composites and multi-
layered materials by the U.S. Army. Such studies are needed in both the
manufacturing phases of products in order to assure quality as well as
during the operating lifetime of the products in order to predict water
infiltration or bond deterioration and hence prevent failure.

The developed multiple-stagecd model started from a mathematical
description of the ultrasound propagation through an inhomogeneous,
isotropic or anisotropic solid with appropriate boundary conditions for the
transmitter/receiver unit coupled to the material under test. Analytical
solutions were employed to initially test and calibrate the numerical
fcrmulations. This numerical approach was configured to be flexible and
realistic enough to investigate a wide variety of bond configurations on the
computer.

Our strategy was targeted at the coupling of these numerical simula-
tions of the underlying physical processes with the experimental data
gathered in-house at MTL. The interaction of transducer signals with
different simulated bondline configurations such as disbonds, pure bonds,
and bonds of varying thickness were examined. The resulting synthetic
data was comparcd to experimental measurements. The correlations of the
experimental and nuiuerical trials were extended to include feature extrac-
tion capability related to inieifacial bond thickness. Therein, individual
characteristic features represcnting the bond thickness were numerically

isolated and overlayed with the experimentally observed signals. - s-:-"""f °“--V‘F"" ,
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I: EXECUTIVE SUMMARY
PROJECT DESCRIPTION

A.) Background

The integrity of bonded structures is of paramount importance in the
safe and reliable operation of military equipment. The Patriot rocket
requires adhesive attachment of the ceramic-dome to the Kevlar ring.
Similarly, titanium components must be bonded to phenolic-based
materials. Helicopter rotor blades are multilayered composites bonded
together Cobra deck paunels, missle radomes, mines, projectiles, and
expivsive cartridges arc samples of advanced military equipment requiring
adhesive bonds and bondlines. The operational readiness and security of
these units depend to a large extent on the integrity of the interfacial bonds.

Nondestructive evaluation of the bonds and bondlines has experienced
very limited success [1]). NDE methods are needed to determine the
streagth of the bonds in situ. Unfortunately, no NDE method has demon-
strated the ability to quantitatively staic the str<ngth of a bond. Several
NDE techniques have been applied to access adhesive bond quality. They
include ultrasonics, acoustic emissions, radiography, holography, nuclear
magnetic resonance, eddy current, and thermal imaging.[2] Of these ac-
cepted NDE methods only ultrasonics appears to retain a reasonable proba-
bility of success in the bondline application [3}. Thermal imaging requires
the composite or radome shell to be of ext:emely small thickness. Other-
wise, tie thermal image of tic interface is coniplately masked by the diffu-
siva of heat tirough the substrate. Nuclear magnetic resonance has shown
sum »-recess in the detection of water vithin bonds but it has not been
able ‘¢ detect disbords, foreign maiter or weak bonds. Ultrasonic pulse-
echy cbniques have been shown to reliably detect total disbond regions.
Some investigators indicat: that the strength of the adhesive layer can be
correlated to the attenuation coefficient and velocity of sound in the mate-

rial [4]. Interfacial and horizontally polarized shear wave measurements

" have demonstrated the ability to discriminate bond strength {5]. However,
the test configurations were highly restrictive and the practical application
of the technique is undefined as yet. Leaky Lamb waves technique uses an
oblique incident wave. Usually the waves reflect off the interface, howev-
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er, certain frequencies excite plate waves in the structure. These leaky waves
have been shown to interfere with the expected reflection pattemns [6]. Deter-
mining the correct frequency for destructive interference patterns is not reli-
able. Researchers have swept the frequencies to find a zone of interference.
If one examines multiple frequency responses of the same test configuration
small subtleties of the bond integrity can be inferred. This ability to detect
weak bonds is still marginal. However, it does indicate that if one could cor-
relate the multiple values obtained from the complex input signals then the
probability of characterizing the system configuration would increase.

B.) Research Accomplishments

The basis of the research plan was the development of a multiple attack
strategy as shown in Figure 1. Building on our past experience into the analyt-
ical study of transient elastic waves radiating into an elastic half-space [8], a
precise model was developed which served as a calibration for our numerical
formulation. This numerical model solves the transient elastodynamic equa-
tion of motion subject to realistic boundary and initial conditions in two-di-
mensional (X,y) space and in three-dimensional (axisymetric) space.

Depending on the employed probe, a longitudinal or shear wave contact
transducer have been simulated. The boundary and initial conditions can be
set over a wide range of practically relevant bounds. Furthermore, since the
model discretizes the general stress equation of motion, anisotropic and inho-
mogeneous material parameters can be taken into account. It is this feature of
matenal inhomogeneity that makes our numerical modeling approach particu-
larly suitable for bondline inspection. A realistic transducer response signal
was ircorporated into the numerical model and tested against the analytical
theory, the propagation of the acoustic pulse was monitored throughout the
test specimen. With the displacement field given at discrete instances in time
it was possible tc “freeze” the acoustic pulse prior to reaching the bonded
area. The bond line itself can be studied in a broad fashion depending on geo-
metric, material, and density parameters. Figure 2 shows some of the bond
configurations tested using our numerical system and experimentally tested at
MTL. The simulated signals are currently being stored and compared with
practical measurements to train a neural net. The initial feature targeted for
extraction from the data is bond thickness which is the main focus in the sec-
ond phase of this project (MTL # DOD/U.S. Army - DAAL04-91-C-0054).
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Microscopic
Disbond

Figure 2a - Double area discontinuity model - Uniformly
distributed microscopic disbonds resulting from surface
contamination - Taken from Thompson.

é\\

‘Umforml 7 Distributed Total Total Multiple Sized : ,
Disbonds Bond Adhesion Disbond Disbonds Arbitrary Disbonds

- Substrate--

Figure 2b - Captured displacement field in upper substrate
is applied to numerous bondline configurations

The use of our numerical model has allowed us:

a) to gain crucial insight into the physical processes of ultrasound/
bondline interaction. This view of the interior region and the physics
of the system are evident in Figure 3. Note how the numerical model
shows the longitudinal, shear, Rayleigh, and head waves propagating
and reflecting within the material. This transparant window is un-
available in an experimental investigation.
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b) to generate synthetic data which can be correlated with practical
measurements in order to interprete field data of relevance to the U.S.

Army;

c) although not implemented completely in this phase I study, the nu-
merical model will allow us to optimize the NDE inspection process
by determing optimal transducer configurations, aperture sizes, fre-
quency settings, etc.

Line of Symmetry

Figure 3:
U, surface plot for plane strain with s 1/4 inch transducer, f= 10 MHz t=0.8 us

Our numerical appreach was closely coupled with the in-house
cxperimental investigations at MTL. The simulated transient outputs
(A-scans) were directly comnpared to the MTI. measurements. The
result section of this report shows the excellent agreement between
the two investigation modes. Additionally, the numerical approach
aided in the development of new or modified signal processing meth-
ods such as the Chirp-Z approach currently under investigation at
MTL [12].




C.) Work Statement of Research

WPI in conjunction with MTL explored the ultrasound bondline NDE integ-
rity from all three accepted modes of scientific endeavor - i.e. experimental,
analytical, and numerical modes.

» Experimental Investigations

a.) MTL testing

The dominant focus was in experimental measurement of samples at
MTL. These bond samples underwent extensive analysis using longitudi-
nal and horizontally polarized shear waves. The Chirp-Z transformation
techniques were applied to enhance the obtained measurements. The
experimental output was saved in multiple formats. The unfiltered trans-
ducer signals (A-scans) as well as hardware Chirp-Z transformed outputs
were stored for all test configurations.

b.) Feature Analysis

The rationale for this procedure was that a specimen prepared with a
prescribed flaw or geometry exhibits a characteristic signal response as
given by such features as frequency content, maximum amplitude, rise
time, etc. [13]. We have tested experimentally and numerically multiple
layer specimens with variety of thicknesses. These signatures are inputs
to a neural net software system which is being trained to output discrete
thickness values of the interface. The training is ongoing with encourag-
ing results and is a dominant component of our phase II effort. The neural
net program was obtained by MTL..

» Mathematical Problem Formulation
Based on the proposed multiple attack strategy the analytical formula-
tions of the problem were thoroughly investigated as to their applicability
for realistically modeling th. physical process. Initial and boundary con-
ditions were examined relative to their influence on the underlying equa-
tions. Approximations to the governing equations were derived and inves-
tigated.

e Numerical Modeling
A finite element model of the elastic wave equation was implemented
on a mid-size computer (DecStation 5000 model 200). The code includes
pre- and post processing options such as adaptive mesh generation and




graphics routines. The user identifies the physical properties of the various
layers (density, wave velocities) and a desired resolution. The system auto-
matically discretizes a domain with individualized nodal resolutions in each
material. The successful two-dimensional modeling (x,y) was extended to
account for full three-dimensional geometries (axisymmetric).

» Verification
The verification of our numerical investigations was two fold. Using
prescribed test configurations our simulations were compared to existing
analytical solutions yielding graphically indistinguishable results. Equally
important, numerical simulations were compared to experimental field tests
gathered at MTL. The result section shows that the numerical simulations
reproduced that observed experimentally with fidelity.

D.) Summary
This work presents a concise overall approach to the analysis of bond-line

integrity as measured via ultrasound NDE. Based on the previously outlined
multiple attack strategy, a clear mathematical recipe was presented that de-
scribes the primary components of the coupled physical phenomenor. of
ultrasonic waves impinging on an adhesive interface. It is expected that this
novel approach will increase the general comprehension of ultrasonic interfa-
cial interaciion for nondestructive testing purposes. Moreover, the numerical
analysis approach was directly tested against analytical studies given certain
simpiifying constraints and against cxperimental results gathered at MTL. In
each situation the simnlated resvlts predicted that observed in the analytical or
expecimental investigative mode with fidelity.
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2 ELASTODYNAMIC WAVE PROPAGATION

2.1 Governing Equations

The governing equation is the balance of linear momentum (Cauchy’s first law of motion)

which in indicial notation can be expressed as

aul
= 2.1
a. +F‘,.P._ (2.1)

where g, is the stress tensor, F, is the body force vector, p is the density and u, is the

displacement vector. The Einstein summation convention is assumed where ij=1,2,3
representing the three coordinate directions x, y and z respectively. ( ), represents a

spatial derivative with respect to the j direction.

In order to solve this equation for displacements it is necessary to express the stress
tensor in terms of displacements. A Kelvin model constitutive relation is chosen to allow

viscous damping.[15]

0y = Couby * Dwéu (2.2)

whare C,, is the elastic constitutive matrix, Dy, is the damping constitutive matrix, £,

’s the strain matrix and €, is the rate of strain tensor A single dot above a variable

signifies a first derivative with respect to time, (wo dots a second derivative. Choosing
a Maxwell model, or a more complicated model for that matter, makes it difficult to solve
for the stress directly. It is assumed that the strains are small and that the matenal
behaves in a linear elastic manner. The strain-displacement and rate of strain-rate of

displacement relations are as follows




1 ; 1. .
&y = E(uk.‘ tu) €y = 5(“1:_,“‘1 ) 23)

Substituting equations (2.3) into (2.2) yields

Oy = Couly (g, *#,)) + D (50l +)) @4)

which can be written as

oy = ﬁuk‘ + Dwﬁl‘ 2.5)

by expanding equation (2.4) and swapping the dummy indices k and / in the second and
fourth terms. Substituting equation (2.5) into equation (2.1) yields
%,

Cu + g + F = p—
il e 1 pa:’

(2.6)

which is the elastodynamic wave equation expressed in terms of displacements. Note that
the wave equation is a set of three coupled second order hyperbolic partial differential

equations.
2.1 Wave Motion

The nature of the motion can be categorized into three types of waves; longitudinal, shear
and surface. Longitedinal (or primary) waves are characterized by particle motion that
is parallel to the direction of propagation. Shear (also called transverse or secondary)
waves are characterized by motion that is perpendicular to the direction of propagation.
Surface waves have motion with components in each direction but whose magnitude
decreases exponentially away from the surface. Surface waves on a ﬁ'ee surface are
known as Rayleigh waves. Waves at solid-solid boundaries are referred to as Stonely

waves.

10




Rayleigh
- y.r

—
xi.z \ Longitudinal

Figure 2.1: Wavefronts generated by a point or line source.

Figure (2.1) shows the wave propagation for a point force on an infinite half-space. All

the waves propagate perpendicular to their wavefronts. The schematic only identifies

wavefront positions; it does not reflect the wave amplitudes which may be zero at some

points on the wavefront. The longitudinal wave travels with greatest speed which is
o 22

expressed as' - =h == for an isotropic, linear, homogenous medium where, u andl4

are Lamé’s constants and p is the material density. The shear wave speed is defined as
C = JE . The Rayleigh wave has a velocity between 86.2 ard 95.5 percent of the C,
depending on Poisson’s ratio. If the half-space is viewed from above, the Rayleigh wave
has a iincar wavefront for plane strain and a circular wavefront for axisymmetric. The
head wave is a shear wave that is produced by the longitudinal wave at the free surface.

The mode conversion is necessary to satisfy the stress free boundary condition.[16]
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Transducer

TN AR

——>y'r

Head ]

Y
X,Z \L Longitudinal

Figure 2.2: Expected wavefronts for finite width transducer.

Figure (2.2) shows the expected wavefronts for a finite width transducer. The applied
force is spread uniformly over the transducer width. The discontinuity at the edge of the
applied force produces wavefronts similar to those generated by a point force. The width
of the transducer only contributes to the flat longitudinal wave.

12




3 FINITE ELEMENT FORMULATION

3.1 Numerical Formulation

Finite element solution techniques for partial differential equations are most commonly
derived by variational principles or by the method of weighted residuals. Each method
attempts to satisfy the differential equation by approximating the solution with a set of
known functions multiplied by a set of arbitrary constants.

P
u - 2 UMy @.1)
e

Where N,, are the known functions, or shape functiors, and the unknown coefficients are

the displacements U,,. The capitalized subscript M refers to the number of discrete

points p used to approximate the solution [18].

The variational approach is based on minimizing a scalar functional derived from the
original differential equation. When solving equilibrium problems of elasticity this
functicnal represents the poteatial energy of the system. In the static case, the
miiimization produces an extremum of the functional guaranteeing convergence of the
solutio. However, applying the variational method to the elastodynamic wave equation
orodi.ccs only a stationery valve not an extremum of the functional [10], therefore
conve: gence is not guaranteed, which is to be expected considering the hyperbolic nature

of the wave equation.

The weighted residual approach will be presented for its simpler mathematical nature, ie.
knowledge of variational calculus is not required. The method of weighted residuals deals
directly with the differential equations. Substituting the assumed solution for the exact

13




solution into equation (2.6), the differential equation will usually not be satisfied over

the eatire domain. The resulting error is known as the residual.

R, = CylUuilNy  + DwOH,N,ﬂ +F, - pU N, +»0 (32)

The spatial derivative does not appear on the U, , I'Ju, and i}u terms because they are

spatial constants. This error is then forced to be zero on average over the domain by

sctﬁng the volume integral of the product of a set of weighting functions W, and the

residual R, equal to zero.

[ WolCuUsu Ny * DuUisNy * Fy = pUuNy1dV = 0 33)
) .

This formulation produces an independent equation for each degree of freedom. Although
the equaiions can be solved at this point, Green’s theorem of integration by parts is used
on the first two terms of equation (3.3). This practice reduces the order of the derivative
on the assumed solution, allowing simple linear shape functions to be used, and also

expresses the boundary conditions explicitly.

-f, W, CouViacNu 4V - [, W, DUy Ny dV
+ fs WLCwuk‘nde + fs WLDde‘n,dS (3.4)
+ [WF.av - [ WpU,N,dV =0

Note that the exact solution has been reinserted into the surface integrals and that n is
the unit outward normal on the surface. By combining the surface integrals and
substituting for the stress tensor using equation (2.2), it becomes obvious that they
represent the surface tractions at the boundary.

14




[ W(Corty + Dyt Inyds = [ W0 mas = [ W,Tds (3.5)

where 7, is the surface traction vector at the boundary. Equation (3.4) can be further

simplified by moving the constant U,,, terms out of the integrals. According to the

Galerkin method of weighted residuals setting the weighting functions equal to the shape
functions yields

1 NNV 10y, + [ N, DNy 4V 10

3.6)
UM, o O 0 = [PV + [

Equation (3.6) is applicable to the entire domain. The equation is effectively discretized

into finite elements by the appropriate choice of shape functions N, .

3.2 Plain Strain and Axisymmetric Formulation

In order to avoid the complexities of a full three dimensional formulation, the simpler
two dimensional plain strein and axisymmetric models are formulated. Advantages
include reduced total degree of freedom models. simpler mesh generation, and ease of
graphical presentation of results. The computational strategies developed in section 5 are
not limited in any way to a two dimensional formulation and can be easily extended to

a full three dimensional formulation.

The plain strain formulation models an object infinitely thick in the z coordinate direction.
This eliminates norma!l strains in the z direction as well as shear strains in the x-z and y-z
directions. The transducer is now modeled as an infinite strip and any voids become
infinite tubes. The waves generated are cylindrical about the z axis. As the cylindrical
waves expand the amplitude of the wave decreases because its energy is spread over a

15




larger area. This phenomenon is referred to as geometric dispersion. The actual
geometric dispersion for a circular transducer is spherical and as a result A-scans from
this formulation do not compare well with experimental data quantitatively.

The axisymmetric formulation models a body of revolution under axisymmetric loading
conditions. This formulation models the physical transducer extremely well because the
geometric dispersion is spherical. The formulation does not work well for voids that are
off of the centerline which are modeled as circular rings. If the emphasis of the analysis
is on the wave interaction between layered mediums the axisymmetric formulation is the
most practical.

The fourth order tensors of equation (3.6) are difficult to deal with and can be reduced

to second order tensors by index contraction [19]. For the plain strain case the Cous 20d Dy
matrices become
i Cuz Cun dyn Gyn Gy
Cos ® Cy = Sun Com Copr Dy =Dy = b,y &y dyy, 37)
Ci2 €212 Cun A1y Gy Gy

An axis of symmetry may be chosen in an x/ or y’ direction if the stiffness and damping
matrices transform such that ¢}, = €5, = 0 and d\; = dpyp = 0. The shape

function matrix is defined as

N, ON, O .. N O

N = (3.8)
Ll1oN ON, .. 0N,

The derivatives of the shape functions become
assuming that the displacements have been contracted according to

16




ELA oN, oN,
— — 0 . =0
& 0 ax ax
oN. aN
N, =|0 M o 2. 0
v oy oy O
oN, OoN, oN, aN, oN, aN,
'y & & & ¥y &
Uy U=[U, U, Uy Up .. Uy U]

where the first subscript is the direction and the second is the node number.

Equation (3.6) can now be cast in the more familiar form

MU + [DIU + [K1U = F, + F,

with the following definitions.

(M) = [N,pN,dsdy
4

(D) = [N, DN, dxdy
A

F, = [NFdxdy
4

F, = { N,T,ds

4

(K] = | N, C,Ny dxdy
4

3.9)

(3.10)

(3.11)

(3.12)

where [M] is the mass matrix, [D] is the damping matrix, [K] is thc stiffness matrix,

F, are the nodal body forces and F, are the nodal surface forces. The volume integrals

tave bee:: reduced to area integrals due to the two dimensional formulation in which a

anit depth in the z direction has been assumed.

For the axisymmetric formulation, N, is the same and Car' Dy, and N, take the
Y

following forms.

17




, 1 r -
Can Cuz Cun 0 dm G Gn O
C!C_cxm"'mzcmso Debzdxmdzmdzmo (3.13)
R I O in dw ey O
(0 0 0 ¢, (0 0 0 dy,
N g W, W]
& oz &
o oo W o M
N, = or or or (3.14)
T S S I
r r r
aN, aN, N, aN, aN, oN,
(o & o & @ o ]

In order for an axisymmetric formulation ©» be valid, the material must be at least
transversely isotroyic with the material axis of symmetry parallel to the z axis {11]. The

expressions preseated for the [C] and [I] matrices have been appropriately reduced.
Equation (3.11) s now defined by

M1 = [2xrN N, drds Fy = [2xrNFdrds
4 4
(D] = _[ 27N, DN, drdz F, = { 2nrN,T,dS (3.15)
[X] = :«f 2mrN, Cyby drd:
The integrations in equations (3.:2) and (3.15) can be calculated numerically using Gauss

quadrature. The shape functions N, for common element types and the procedure for
Gauss quadrature can be found in many textbooks [20,21).
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3.3 Time Integration

Equation (3.11) represents a system of linear second order differential equations in time.
Numerical solution schemes are based on discretizing time into intervals and satisfying
the system only at those time slices. Various schemes include the central difference
method, the Newmark method, the Houbolt method and the Wilson-© method. The
difference between these schemes is determined by how they estimate the displacements,
velocities and accelerations within each time step [22]). Although these methods are
commonly referred to as finite difference methods in time, Zienkiewicz has shown that
they are equivalent o a finite element formulation using the weighted residual method

applied to an interval 2Ar if the shape functions are chosen appropriately [23].

These methods fall into two groups, implicit and explicit Explicit implies that the
solution at time ¢ + At depends only on known values at previous time steps. Implicit
implics that the solution at time ¢ + At depends on known values at previous time steps
as well as values at the current time step. The main advantage of the explicit methods
is that the system of equations is decoupled. The disadvantage is that small time steps
are required for stability. Implicit schemes are stable for larger time steps but require a
matrix to be either inverted or triangularized at the first time step. Due to the large size
of the matrices involved, the explicit central difference method is employed.

Using the central difference method the acceleration term is estimated as

1
(Ar)?

U = [Uts - 2U" + U'-8Y (3.16)

assuming that At remains fixed. The velocity term was estimated using a backward

difference to avoid a matrix inversion and maintain an explicit solution [23]

U' = —[U* - U (3.17)

1
At
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Substituting for U and U" using equations (3.16) and (3.17) into equation (3.11) and
solving for U™, yields the following fully explicit equation neglecting body forces.

3.18
U = At[M {At(F] - [KIU*) + [D)(U* - UY) + 20" - U™ (48

3.4 Mass Matrix Diagonalization

The mass matrix resulting from the integration defined in (3.12) and (3.15) is called the
consistent mass matrix. It can be evaluated using Gauss quadrature numerical integration.
However, to maintain an explicit solution the mass matrix is diagonalized. The mass
matrix can be diagonalized without a significant loss of accuracy by using the following
formula on an elemental basis [24].

M 2 P
d
My = —— Y ) M; (3.19)
==
’2_; p

where the superscripts d and ¢ stand for diagonal and consistent matrices respectively.
Alicrnatively the diagonalized mass matrix can be evaluated directly by moving the Gauss
quagrataic points to the node points. This approach works well with the plane strain
forinalation but fails for the axisymmetric case when the elen:ent is on the centerline
(r =0). After diagonalization, the matrix inversion is reduced to inverting each diagonal
compnnent individually. If a central difference formula is used to estimate the velocity,

solving for U**4* would require the sum of [M] and [D]. which would no longer be

diagonal, to be inverted. The [D] matrix can not be diagonalized because the sum of the
components will always equal zero.
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3.5 Stability Constraints

The disadvantage of the explicit method is that it is only conditionally stable. The
constraint governing the stability is known as the Courant constraint.

Courant = q = C._ B¢

1.0 3.20
max Axm < ( )

Where C_, is the longitudinal wave velocity C, of the material of that element and
Ax_, is the length of the shortest edge for a rectangular four noded element. For a three

noded triangular elenent or a four noded parallelogram, Ax_, will be the shortest

distance from any node to a non-adjacent side. Every element must satisfy equation
(3.20) for the solution to be stable. In the explicit method information flows across one

element per time step. Therefore the minimum rate at which informatior: flows is the
miramomn: Ax divided by the time step At. If thai rate is slower than C___ the numerical

solution can not approximate the actual wave motion and the solution will diverge, which
is the constraint of equation (3.20). [26]

3.6 Initial Conditions

The initial conditions needed to start equation (3.18) are the full displacement vectors at
¢- -At and £ =0 The first displacem:nts calculated are for ¢ = At. Altematively, if the
aceleration, velocity and displacemeni veciors are known at =0 a Taylor series

expansion can be used to approximate the displaceinent at ¢ = At.

U4 =0+ A0’ « 2arp2 0° (321
If only the initial velocity and displacement vectors are known a backwards Taylor series
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expansion can be used to find the displacements at ¢ = -At as follows [11].

U—At = UO - AtV-At (3.22)

Equation (3.18) can then be used at subsequent time steps. Although non-zero initial

conditions are acceptable, it is assumed that the medium is initially at rest with no
internal stresses. The initial conditions then become U4 =0 and U° =0. If a forcing
function is applied that is zero at ¢ =0 the solution of equation (3.18) at £ = At will not
produce any displacements and can be avoided by sobstituting F**4? for F* in equation

(3.18) and increasing the total ime at each time step by At and setting the response att = At

equal to zero.
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4 COMPUTATIONAL CONSIDERATIONS

Upon first inspection, it would seem that implementing the finite element solution could
be done in a similar manner to the simple static case. However, it becomes apparent
quickly that there are several problems The extremely short wavelengths of the
ultrasonic waves force the finite element mesh to become extremely dense. Due to the
large number of degrees of freedum of the dense mesh, the memory required to store the
matrices is excessive. The difficulty is compounded by the requirement of a time step
size that is proportional to the element spacing through the Courant constraint. The
number of time steps necessary to complete an analysis quickly grows into the thousands.
Copsequently execution fimes cai casily siretch into months. This section presents a
computer implementation strategy that avoids these pitfalls, creating a useful tool for the

investigation of ultrasonic phenomena.

4.1 Memory Storage

For iarge meshes the meinory required to sture ihe stiffness and damping matrices quickly
becomes prohibitive hecause then size is of the order of the number of degrees of
freeiom squared. For exanple, if the mesh has 1,000,000 degrees of freedom, the full
stiTiness matrix will neec 4,000 gigabytes of memory using single precision. For a
banded matrix solver, assuming a 500 by 1000 node mesh, the memory reduces to 8
gigabytes. However using a sparsc matrix solver only requires the storage of the non-
zeao values, reducing the memory to 72 megabytes for the stiffness matrix. The damping
matrix is of equal size increasing the total to 144 megabytes. Although this amount could
be handled, it requires the cpu to swap memory back and forth from secondary storage

23




which is extreinely inefficient and time consuming. An alternative method for storing

those matrices is pursued.

One of the advantages of using the explicit formulation is that the global matrices are not
assembled. Bathe and Wilson [22] suggest that the displacements can be computed using
an element by element approach. Displacements are multiplied by the elemental matrices
and the contributions are assembled in the new displacement vector. Further savings can
be achieved if only the unique elemental matrices are saved. Although the element by
clenent strategy reduces the memory required to the absolute minimum it creates
redundant operations. Assuming a rectangular linear mesh, each node will be visited by
four elements. There are eight multiplications for each degrze of freedom per element
visit or 64 total multiplications per node. The assembied matrix multiplication is
completed by eighteen multiplications per degree of freefom resulting in a total of 36
multiplications per aode. For uniformly m_sicu bnear wriangular eleinents, there are 72
multiplications for the elem:at Ly element approach and only 28 for the assembled
matrix. For a 3-dimensional, 8 noded brick formulaticn there are 576 awltiplications for
the element by element and 243 for thie assembled matrix.

-y

Layer 1

. J A el Ay At L4 -

B - Unigua Ewnen; £ - unique Bemenm
. = Unigue Node . = Unique Node

Figure 4.1: Plane strain unigue node and Figure 4.2: Axisymmetric unique node
element locadons. and element locations.

This redundancy can be eliminated by identifying and storing unique rows of the
assembled matrices. A node by node approach can then be utilized to reduce the number
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uf operations to the minimum. A unique node location is determined by the properties
of the surrounding elements and by their relative positions. For simple layered
geometries, with homogencous material properties within each layer, an a priori method
of determining the unique nodal locations is shown in Figures (4.1) and (4.2) for the plain
strain and axisymmetric configurations, respectively. The number of unique nodes for the
layered model can bhe calculated using the following formulas.

Number of unique nodes = 6(NL) + 3 (Plane Strain)
Number of unigque nodes = 2(NL + 1)(NR) (Axisymmetric)

4.1)

Where NL is the number of layers and NR is the number of nodes in the r direction. The
plane strain formula is independent of the number of nodes in the x or y directions. The
axisymmetric formula is independent of the number of nodes in the z direction but
dependent on the number of podes in the r directon. The memory required to store the
stiffucss and Jdamnping mairices for a S00 by 1000 node, three layered model is reduced
irom 144 Mbytes to 12 kby:es for planc strain and 2.3 Mbytes for axisymmetric. Each
unique node is given an ineger flag to associaie it with its unique row. The remaining
non-unique nodes are assigned the iiag number for the appropriate coniesponding unique
node The mass matrix can be stored in the same fashion because the unique nodes in

Figures (4.1) and (4 2) are also unique mass nodes.

‘The Incal stiffness matrices are only calculated =i the unique element locations shown in
Figures (4.1) and (4.2). The unique clenents are flagged in a similar manner as the
anique nodes. Row assemblage is accomplished by visiting each unique node, calculating
the unique element flags for ihe four surroundiig elements and assembling the appropriate
values from the local stiffness matrices into the unique rows, or.e for each degree of
freedom. The process is exactly the same as in conventional finite element methods

except that only two rows of the ass:mbled matrix are saved.

The node by node form of equation (3.18) can be written as follows.
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Ult™'= At M ggna{ At(F, - K], T") + [D),,, (U - T")} + 20U, - Uy 42)

The bar over the displacements indicates a vector quantity and [ }.., indicates the
eppropriatc row of the matrix. [ lg,..u indicates only the diagonal component of the
appropriate row, making [M]y,z.n 8 SCalar quantity.

4.2 Solver Efficiency

The bulk of the time used by the solver can be attributed to two processes. The first is
the actual solution to the differential equation The second is the determination of the
element connec'ivity necessary to place local node contributions in the correct global

locations. To develop the most efficient solver possible both of these processes are
streamlined.

Equation Reduction

The first step in minimization of the actual solution factors equation (4.2) for the
displacements. The resulting coeTicients are constant and are premultiplied to avoid
repeating the same multiplications every time step. The factored equation becomes

U:;,M = F| + [K],'wﬁ' + (K U 43

with the following definitions.

F, = A MlaeonaF,
Kl = ~A2 M goqmalK ] = AtIMLiogmaDl,,, + 201, @9
(Kl = At [Mlsgona[D),,,, - 11,

where (/] is the identity matrix. If damping is not included, equation (4.3) becomes
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ULt = F + KL, T - UL @5)

with the following definitions.
F] = ACMlg o F,
¢ [ ‘ (4.6)
Kl = ~A MoK, + 2101,,,,

Note that the U *~4* term is no longer a vector quantity in equation (4.5).

Automatic Connectivity

The time expended on the clement connectivity can be minimized if the mesh is restricted
so that the connectivity is determined algebraically. The restriction simply requires the
connectivity to be equivalent tc a sectangular grid with regular node numbering. It is
unportant to note inat the nodal coordinates are not restricted as long as gaps or overlaps
are not created. Voids can be modeled by giving a rectangular section of elements zero
local stiffness matrices and skipping the displacement solution at nodes that lie completely
within that area. The connectivity is then calculated using the row and column of the
element However, if the node numbers are determined solely by the row and column
numbers the node numbers themselves do not produce any new information. The impetus
for global node uumbering is ivo represent the asscmbied matrices as two dimensional
arrays that can be inverted using stock solvers. Since the inatrices are not inverted, nodes
cau b2 labeled using the row and column numbers by increasing the dimensionality of the

AITAyS

U = Uk,ij) 4.7)

Where £ is the displacement direction (1 =x,2, 2 =y,r), i is the row number and j is the

column number. This eliminates the operations necessary to convert to global node
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numbers. The connectivity is then easily calculated as the following.

U iy~ | Ulksi-1,j-1) , Uk,i-1,)) , Uk,i-1,j+1) ,
Uk,i,j-1), Uk, Ukij+b, (438)
v(k'i+llj-l) ’ U(k:“'l:j) ’ U(k"+lvj+l) ]T

Where each term is repeated twice, first for k=1 and second for k=2 (see equation
(3.10)). The elements are also numbered using row and column numbers when the unique
stiffness and damping rows are determined before the first time step. After that the

element numbers are no longer needed using the node by node solution,
Row-Column Multiplication

To facilitate the row-column multiplications in equation (4.3), the unique rows are
separated into two (3x3) arrays. One wray are for the values that are muliiplied by

displacements in the x,z direction and the second are for the values multiplied by the
displacements in the y,r direction. Equation (4.3) becomes

V" = Fy ¢ K1y U + (K13 Uy ¢ KD U; + IKD,, O 49)

The primed stiffness rows in equation (4.9) are stored as [I(j,',,,., = UNK(k,l,m,n) and
[k];'m, = UND(k,l,m,n) where k irdicates the displacement direction, / and m are the (3x3)

nrray indices and n is the unique row number. The (3x3) arrays are arranged to

corfespond to the node connectivity which is alsu defined by a (3x3) array (equation

(4.8)). The row-column multiplication can then be accomplished by multiplying values

in the same array positions and adding the result.

Boundary Conditions
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Dirichlet type boundary conditions can be applied simply by setting the nodal
displacement at time ¢+ At equal to the specificd displacement. This can be done after
the solution at the node is calculated or if it is more efficient the solution at the node can
be skipped. If the Dirichlet boundary conditions are not functions of time, the
displacement vectors can be initialized with the prescribed values and the solver can
igno:c those nodes. The boundary conditions are then implicitly applied at every time
step. For the layered medium model, Dirichlet boundary conditions are applied only at
the nodes along the axis of symmetry which are restricted from moving in the y,r
direction.

R
BERER

y.f

=0

axds of symmetry
}
|
d
1

X,z

Figure 4.3: Boundary conditions for half symmetry model.

Newn.iann iype boundary conditions can be applied at the specified nodes by including the

F, te'm in equatior (4.3). The force term appzars only at the nodes on the top surface

andec the wansducer. This reduces the anivunt of meory required to store the F, array

ano eliminates unnecessary computations The remaining regions are traction free
boundaries, see Figure (4.3) Tt is interesting to point out that free body motion is not
restricted in the x,z direction. This does not cause a problem because the stiffness matrix
is not inverted. If the forcing function has a non-zero net force, the mesh will eventually

gain a net velocity in the same direction. The displacements will then continue to grow
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in time. If the forcing function bas a zero net force the displacements will remain

centered about the initial mesh location.

Solution Regions

As the solver moves from node to node it needs to recognize whether the node is on an
edge, on a comer or in the interior. It also needs to know if boundary conditions are
being applied at that node. As the solver visits each node it determines the unique flag,
performs the row-column multiplications and completes equation (4.3) or (4.5) by adding
the remaining scalar quantities. To accomplish this as efficiently as possible, the nodes
are divided into regions where the solution is performed separately. After a number of
iterations the solver changes to a different sectional configuration.

‘The initiai solver Las five sections as shown in Figure (4.4). Section 1 contains only the
corner node on the top surface on the axis of symmetry. Section 2 contains the nodes on
the top surface under the transducer. Section 3 contains the nodes on the top surface not
under the transducer. Section 4 contains the node on the axis of symmetry. Section 5
contains the interior nodes, right boundary nodes and the bottomn surface nodes. The
Neumann type boundary conditions are applied in sections 1 and 2. The Dirichlet
bourdary conditions are applied in section 4. The row-column multiplications are reduced
in sections ! through 4 because the connectivity is lowered from 9 to 6 for t.hc‘ edge

sections and from 9 to 4 for the corner node.
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Section 1

Figure 4.4: Initial solver solution regions.
contains the

nodes on the top surface excluding the comer nodes. Section 2 contains the nodes along
the axis of symmetry. Section three contains all of the interior nodes. Sections 4 and 5
contain the right hand side boundary nodes and the bottorn surface nodes respectively.

Similarly row-column multiplications are reduced in sections 1,2,4 and 5.

1 3

yrf

X,z
Figure 4.5: Secondary solver solution regions.

When computing the solution in section 5 of the first solver and in section 3 of the
second solver, the order in which the solver proceeds from node to node greatly affects
the execution time for the axisymmetric formulation. The sweep should be carried out
by starting at the upper left-hand node and moving down the column and then advancing
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one column to the right. This sweep pattern is more efficient because the unique node
number does not change in a single layc. as the solution proceeds down the column. This
is fastcr because the pointer to the stiffness and damping arrays is not recalculated for
each node. If a horizontal sweep is used cpu time is increased by 30 percent.

Expanding Solution Domain

At each time step information travels across one element. For the nodes that have not
been reached yet, the solution of equation (4.3) consists of 72 zero multiplications and
72 zew> additions because the displacement vectors will contain all zero entries.
Obviously no new information is gained by carrying out the solution at those nodes.
Therefore the solution wili be extremely inefficient at early time steps when a majority
of the nodes fall into this group.

Expanding the solution domair: st the same rate as the flow of information eliminates the
unnecessary calculations. The initial domain consists of the nodes under the transducer
(section 1 and 2 in the initial solver) and expands by one row and one column with each
time step until it reaches the boundary Figure (4.6) shows an example of how the
solution domain advances.
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doniain is most pronounced when the total time of the analysis is short. As the number

of iterations beyond the time when the solution covers the entire domain increases, the
realized time savings become a smaller percentage of the total execution time. It is
extcuiely helpful when debuggiug changes to the program because of the quick initial

response.

Solves Switching

The switch from the first solver to the second solver is determined by either the number
uf ierations necessary to complete the solution domain expansion or the number of

‘terations over which the forcing function F, is applied. The greater of ihe two

eonins e iteration al which the switch is made. 1f the 2xpansion is the determining
“. .. ihe forcing fanction wil' be ser to cero after it is complete  If the opposite is true,
ihe « .pansion will stop when the outer boundaries have besn reached. The solver will
not custinguish between the interior nodes and outer nodes when sections 3, 4 and 5 reach
the esge of the domain and will assume a connectivity of six, six and nine respectively.
The displacement vectors are dimensioned to include one extra row and one extra column

of ‘imaginary’ nodes on the right-hand and bottom sides. The solution is unaffected
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because the corresponding stiffness matrix components will be zero and solutions are
never calculated at those nodes.

Displacement Vector Rotation

The solution of equation (4.3) requires threec separate displacement vectors to be stored
simultancously, namely U0=T"% , Ul =T’ and U2=T"¥. As the time step
advances the U**%* vector becomes U* and T* becomes U2, Therefore at the end of
every time step U0 must be set equal to Ul and then Ul must be set equal to U2. The
solution is then repeated solving for the new U2. In order to avoid this operation, the
solver is repeated three times in succession. In the first section U0 = U*"%*, Ul = U" and
U2 =T*%. In the second section UO=T"%, Ul =T"% and U2 =T". The third
section completes the cycle with U0 =TU’, Ul =U"Y and U2=T"%. This process
shifts the displacem~ . - sctors back implicitly.

If damping is neglected and equation (4.5) is used, only two displacement vectors need
to be stored. The U’ displacement vector can be calculated directly into the T*4*
because of the one to one correspondence in equation (4.5). In this case the solver is
only split into two sections. In the first section UI = U* and U0 = T*™% to start with U0
becoming U4 as the solution proceeds from node to node. The second section has
U0 T’ and Ul =U"* with UI becoming T"* to complete the cycle. For simple
models where the number of unique nodes is small, the displacement vectors become the
limiting memory requirement. For the 500 by 1000 node model, each displacement
vector takes 4 Mbytes of memory. By rolling U**4* into T""4 the total memory required
is reduced by nearly 33 percent.
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5 FINITE ELEMENT CODE VERIFICATION

5.1 Convergence

Several factors influence solution convergence. The stability of the time integration, as
discussed previously in section 4.3, requires the Courant number to be less than or equal
to one. However, the solution will not convcrg-e for ¢ = 1.0. The numerical integration
of the stiffness matrices, time integration methods, computer round-off errors and
dispersive effects are possible causes of solution divergence. The inability of the model
to represent the forcing function either in time or space will not affect solution
convergence. The solution will, however, not produce the correct displacements. The
mass matrices are not a source of error because they are exactly integrated by a four
point Gauss quadrature.

Stiffness Matrix Numerical Integration

The numerical integration of the stiffness matrix for the plane strain case is exact for 4
point quadrature. Increasing the order of integration will not increase the accuracy of
the solution. Single point integration is not acceptable because it allows certain
combinations of displacements to exist in the absence of nodal forces. The axisymmetric
formulation of the stiffness matrix involves a r~! term which can not be exactly
integrated using Gauss quadrature. However, for the axisymmetric case increasing the
order of numerical integration to 9 and 16 point quadratures had no appreciable effect
on solution convergence or wave velocity. One reason for this is that the wave
propagations investigated were all axial in nature. The axial waves are driven by the
terms in the stiffness matrix that do not contain the »~! term and are integrated exactly
by the 4 point quadrature. For a complete study, radial wave propagation properties
must be investigated.
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Time Integration

The central difference approximation of equation (3.16) does not produce any instabilities
as long as the Courant constraint is satisfied. The backwards difference approximation
in equation (3.17), however, does introduce an instability proportional to the magnitude
of the components of the damping matrix. The addition of viscous damping usually
increases the stability of 2 numerical solution by damping out spurious modes. With the
backward difference formula the velocity at time ¢ is estimated as the velocity att - %
which can cause the viscous force to be larger than the sum of the other forces acting on
the node causing the solution to diverge [25]. Decreasing the Courant constraint will
decrease the time step and reduce the effect of the error of the backward difference
approximation. If the velocity was approximated with a central difference formula the
viscous damping would indeed increase the stability of the solution.

Computer Round-off Error

The code was written in bott single precision (8 digits) and double precision (16 digits).
The solution convergence was not affected by the increase in accuracy of the double
precision representation. Divergent solutions showed exactly the same A-scan for single
precision as for double precision. Double precision is only necessary to retain accuracy
during matrix inversions. Because there are no matrix inversions in the formulation
single precision accuracy is acceptable. However, because single precision is more
sensitive to underflow conditions, i.e. when numbers become smaller than can be
represented by the computer, equations (4.3) and (4.5) must be modified. Factoring out
the AF term from [K]., and [K].,, will minimize the number of underflow checks.
The main advantage of using single precision is a 25 percent increase in processing

speed.
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Spatial and Temporal Discretization

The degree of spatial and temporal discretization is determined by the frequency of the
forcing function. For sinusoidal input, the degree of spatial discretization is defined by
the number of nodes per wavelength, n_ = -:—‘ The degres. of temporal discretization
is defined by the number of time steps per period, n, = {-'. The degrees of
discretization are not independent due to the Courant stability constraint. Substituting
n, and m, into equation (3.20) yields the following relation

n, = qn, (5.1)

which guarantees that the temporal discretization will always be greater than the spatial
discretization. The forcing function is a raised cosine function given by

F, = [1 - cos(Seos(or) Osts% 5.2)

which has a Gaussian frequency distribution centered at @, see Figure (5.1). Figures
(5.2-4) compare displacement results for three different values of a, for the initial wave,
the first reflection and the second reflection, respectively. Note how the error for
n, = 4 does not increase as it propagates. Depending on the degree of accuracy
required, an n_ in the range of 6 to 10 is suggested. The numerical model used is
explained in the next section.

5.2 Dispersion
Dispersion is the variation of wave velocity with frequency. If the forcing function has
a broad band frequency content, dispersion will cause the wave to change shape as it

propagates. An isotropic, homogeneous, lossless material is non-dispefsive. Numerical
solutions will often introduce an artificial dispersion creating an error in the solution.
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Figure 5.2: Initial waveform forn, = 4, 7 and 10
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The numerical solution of equation (2.1) employs both spatial and temporal
discretizations. Each of the approximations causes dispersion. As shown by Krieg and
Key [27] and Belytschko and Mullen [28,29], choosing the appropriate combination of
mass matrix and time integration can minimize the artificial dispersion. The combination
of lumped mass matrix and central difference time integration for ¢ = 1.0 is a completely
nondispersive solution along element edges. The lumped mass matrix decreases the
phase velocity as frequency increases and the central difference integration increases the
phase velocity as frequency increases. As g is reduced the dispersive effect of the central
difference integration is reduced which shifts the net dispersive curve towards the lumped
mass dispersive curve. Because the dispersion is dependent on the element size thmugh
the Courant constraint, a mesh with nonuniform elements in the same material will have
nonuniform dispersive properties. For models containing more than one material, the
spatial discretization a, must be the same in each material for uniform dispersive
properties.

Although a completely nondispersive solution is desirable, it is not possible because the
solution diverges if extremely high frequencies are not attenuated. In fact, for the
undamped case, solution convergence is completely determined by the combination of the
highest unattenuated frequencies and the lowest natural frequency at a node.

A special model is created to reveal the effect of dispersion on the solution. Starting
with the same model as shown in Figure (4.3) the boundary conditions on the right-hand
side are changed to model another axis of symmetry, see Figure (5.5). The forcing
function is applied to the entire top surface with a uniform distribution. The raised
cosine signal imparts a zero net force on the model and approximates the actual wave
pulse generated by a piezoelectric transducer [30]. The model then becomes one
dimensional, which eliminates any geometric dispersion. Figures (5.6-8) show how the
artificial dispersion affects the wave shape as it bounces back and forth. When ¢ is close
to 1.0 the solution is nearly non-dispersive as predicted [29]; as the g is lowered the
dispersive effect is increased. With decreasing g, the solution converges to the dispersive
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Figure 5.5: Boundary Conditions for dispersion test.
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effect caused purely by the mass lumping.

5.3 Qualitative Results

The wavefronts produced by the finite element code are compared with Figure (2.1) and
(2.2) qualitatively by plotting the displacement fields for a point source and a one quarter
inch transducer at a given time step. Surface plots are used to display a single
displacement component. Although the wavefronts can be clearly identified, the plots
do not represent the actual wavefront shapes which contain only in-plane displacements.
A 7.0 by 7.0 mm mesh with Aluminum material properties is used and displacements are
stored at 1.2 us for the point source and at 0.8 ps for the transducer.

Line and Point Source

Figures (5.9) and (5.10) show the point force displacement results for the plane strain
and axisymmetric codes, respectively. The wavefronts agree with those predicted in
Figure (2.1). The longitudinal, shear, head and Rayleigh waves can all be identified.
The longitudinal wave does not fully appear in either plot. The x,z displacements are
zero in the y,r direction and the y,r displacements are zero in the x,y direction as
expected, which confirms that the displacement direction is parallel to the direction of
wave propagation. There is a small bias in amplitude to the x,z direction which is
justified because that is the direction of the applied load. The slope of the shear wave
in the y,r direction is not zero at the axis of symmetry. This does not create a
discontinuity because in the mirror image the y,r displacements must be reversed in sign
to maintain a symmetric response. There is no sign reversal for the x,z displacements.
The Rayleigh wave will also have a similar sign reversal for its y,r displacements. The
Rayleigh wave has the largest amplitude and does appear to decrease exponentially away
from the surface. The x,z and 1,y displacements for the Rayleigh wave are out of phase
by 90 degrees which agrees with the expected ellipsoidal motion. The large Rayleigh
wave obstructs the view of the head wave that originates where the longitudinal wave
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Figure 5.9a: U, surface plot for a line source , f=SMHz t=12 ps

Figure 5.9b: U, surface plot for a line source , f=5 MHz t=12 us
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Figure 5.10s: U, surface plot for a pointsource , f=5 MHz ¢=12 us

Figure 5.10b: U, surface plot for a point source , f=5 MHz t=12 ps
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grazes the top surface and connects tangentially to the shear wave. The axisymmetric
wave amplitudes decrease faster than the plane strain wave amplitudes as the waves
move away from the center because of the difference in geometric dispersion.

Transducer

Figures (5.11) and (5.12) show the

displacement plots for the one quarter Point Transducer
inch transducer. Again the wavefronts { W
agree well with those predicted in Figure
(2.2). Most of the energy from the
center of the transducer goes directly into
the flat longitudinal wave giving it the

greatest amplitude. The other waves are

Figure 5.13: Point source and edge effect
smaller because they are generated only shear wave propagation.
from the discontinuity at the edge of the
transducer. The waves caused by the discontinuity are similar but not identical to those
caused by a point force. The shear and Rayleigh waves are now inverted in the x,z
displacements and have the same sign in the y,r displacements. Figure (5.13) shows
more clearly how the step discontinuity differs from the point source. Again, waves
moving away from the center are attenuated faster in the axisymmetric case because of
the difference in geometric dispersion. Waves that are travelling towards the center for

the axisymmetric case will actually gain amplitude as the spherical wavefront collapses.

5.4 Analytic Results Comparison

Analytic solutions for a line source and a point source at points within the domain are
plotted against the numerical solutions as a2 means of validating the finite element code.
The analytic solutions presented here were calculated with the Cagnaird de-Hoop
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Figure 5.11a: U, surface plot for plane strain with & 1/4 inch transducer, f=10 MHz t=0.8 us

Figure 5.11b: U, surface plot for plane strain with a 1/4 inch transducer, f= 10 MHz ¢=0.8 us
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Figure 5.12a: U, surface plot for axisymmetric with a 1/4 inch transducer, f=10 MHz t=038 us
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Figuse 5.12b: U, surface plot for axisymmetric with 8 1/4 inch transducer, f=10 MHz 1=08 ps
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formalism presented in [4] by S. Dai. A y.r
raised cosine signal at 10 MHz is used as v
an input and the points were taken at radii
of R=10,20 and 4.0 mm each at ’
angles of ¥ =0, 30, 60 and 87 degrees, X2z

see Figure (5.14). The results are shown Figyre S.14: Location of points for analytic
in Figures (5.15-21). At ¢ =0, y,r comparisons.

direction displacements are not plotted because they are set to zero by the applied
boundary condition along the axis of symmetry. Reflections from the finite sized
numerical model are not shown because the analytic solution assumes an infinite medium.
All three R locations are plotted on the same graph. The R =2.5 and 4.0 mm signals
have been offset on the abscissa by 1.0 and 2.0, respectively, to separate the signals
completely.

The line source results for the plane strain code compare very well with the analytic
solutions for angles of less than 30 degrees. As ¥ increases, the solutions no longer
agree. This is due to the singularity of the analytic integration at the x = 0 surface which
distorts the head wave. Table (5.1) lists the correct arrival time for the longitudinal,
shear and head waves. The head wave is tangent to the shear wave at § = 33.4 degrees,
therefore head wave timings are only listed for 60 and 80 degrees. The longitudinal and
shear waves arrive at the same time for all values of ¥ for a given R. The numerical
solution gives the correct arrival times. The solutions also appear to agree better once
the longitudinal and shear waves have separated at R =2.0 and 4.0 mm. The difference
at R = 1.0 mm might be explained by a slight difference in timing which causes the
waves to add differently making the displacements appear to be dissimilar.

The point source numerical solution results are plotted in Figures (5.22-28). Although
the analytic data was not available, the results compare well with those presented in [24].
The analytic solution for a dirac delta function point load is a dirac delta displacement
wave, therefore a longitudinal wave created by convolving a dirac delta function into a
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Figure 5.15: Line source x-direction displacement ¢ = 0 f ~ 10 MHz
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Figure 5.16: Line source x-direction displacement ¥ = 30 f — 10 Mhz
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Figure 5.17: Line source y-direction displacement ¢ = 30 f - 10 MHz
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Figure 5.19: Line source y-direction displacement ¢ = 60 f — 10 MHz
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Figure 5.21. Line source y-—direction displacement ¢ = 87 f - 10 MHz
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Figure 5.23: Point source z-direction displacement ¢ = 30 f - 10 MHz
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Figure 5.24: Point source r-direction displacement ¢ = 30 f - 10 Mhz
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Figure 5.25: Point source z-direction displacement ¢ = 60 f - 10 MHz
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Figure 5.26. Point source r-—direction displacement ¢ = 80 f - 10 Mhz
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Figure 5.27: Point source z-direction displacement ¢ = 87 f — 10 MHz
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Figure 5.28: Point source r—direction displacement ¢ = 87 f - 10 Mhz

56




T Y A

Table 5.1: Longitudinal, shear and head wave arrival times in ps.

60° oo |
1597 2900 -2594 a2 |
2.5 .3993 7251 6484 404 |

4.0 1.1601 1.0374 6887 H

raised cosine produces a raised cosine displacement. The longitudinal wave for the

Head Wave i
radius Long. Shear
0

.
1.

numerical solution is a raised cosine as expected. The wave timings also agree well with
those listed in Table (5.1).

5.5 Experimental Results Comparison

A total debond 1is modeled

|;— 5 mm —.| 1/4 inch wraneducer

experimentally using a single

- 24
aluminum plate supported at the 7Hme Aksninum | '
perimeter. The transducer is placed 1
in the center of the plate to avoid Xz

contaminating the A-scan results with

reflections from the plate edges. One

quarter inch diameter transducers with Figure 5.29: Single aluminum plate
center frequencies of 5 and 10 MHz experimental configuration. (not to scale)

are used. Figure (5.29) shows the physical dimensions of the experimental configuration.
The material properties of the aluminum are C,;=6261.0 m/s, C,=34482 m/s and
p=2842.0 kg/m®. The numerical A-scans are calculated by a weighted average of the
displacements at the nodes under the transducer for each time step. The weighting is the
same as the distribution of the uniform load to the nodes.

The experimental and numerical results are compared in Figure (5.30). The experimental
data is shifted so that the first longitudinal reflection overlays with the numerical
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Figure 5.30a: Numerical and experimental A-scans for debond, f = 5 MHz

LI TTj]llll]llll

Numerical
------ Experimental

N
l
E
=

lIIl'IlTTI1llllllll

1 ] i 1 l 1 1 I 1 l | i i [ I

NENENENEE N

Cl oo b

N

Time (microseconds)
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prediction. The axisymmetric code without material damping is used for the numerical
solution. The experimental and numerical results are in excellent agreement even without
any damping effects. The large waveforms are the first and second longitudinal wave
reflections from the bottom surface. The shallow waveforms between the longitudinal
reflections are mode converted shear waves created when the longitudinal wave reflects
from the bottom surface. Inspection of the experimental results suggests that the input
wave is close to the raised cosine but not exactly the same.

A schematic of the layered material

experimental configuration using two

p— %8 mm ——| 1K inch snaducer

} L

aluminum plates separated by a thin "= m"‘""’"" AccusdcGel | o
[ 32 ]

layer of acoustic gel is shown in — {

Figure (5.31). The material l

properties of the gel are
C,=1490 m/s and p = 1080.0 kg/m?.

The shear wave velocity for the gelis Figure 5.31: Three layered medium
very low and is estimated for the experimental configuration. (not to scale)

numerical solution as 10 percent of C,. The bond thickness is controlled by a small
diameter wire placed around the perimeter of the plates. Physical dimensions are also
shown in Figure (5.31).

Figure (5.32) compares the experimental results to numerical solutions. The first wave
is the longitudinal wave reflection from the bottom of the top plate. The following
smaller wave is the longitudinal wave reflected from the top surface of the lower
aluminum plate. The next two waves are longitudinal waves that have reflected back and
forth within the bond layer multiple times. The phase difference in the bond layer
reflections could be caused by the lack of damping in the numerical model.
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5.6 Attenuation Example

The damping effect on wave propagation is illustrated by plotting the displacements at
successive time intervals with the same scale. The z direction displacements are plotted
for a undamped and a damped case at ¢ = 1.0, 2.0, 3.0, and 4.0 us in Figures (5.33-36).
The damping is assumed to be isotropic with values of D,,,, =111.45 NS/m’ and
Dy,yy; =25.07 NS/m? [11] so that the damping matrix is proportional to the stiffness
matrix. This situation is equivalent to Rayleigh damping with @ =0 [16].

The attenuation of the longitudinal wavefront is evident after only one reflection. At
t =4.0 ps the longitudinal wave has been reflected by the top surface for the first time.
Introducing viscous damping through equation (2.2) results in damping that is
proportional to the square of the frequency, which results in a dispersive solution.
Therefore, in addition to decreasing the amplitude of the waves, the damping term
produces a change in the waveform. The actual damping in a polycrystalline solid such
as aluminum has a more complex attenuation that becomes proportional to the frequency
to the fourth power for very high frequencies [31].

5.7 Anisotropy Example

The anisotropic capability of the code is tested using the transversely isotropic [C]
matrix for Cobalt. The components of [C] are

Cyyyy = 35.81x10° Njm?

Cypy = 1027210' N/m?

Capy; = 16.50x10'° Njm?

Cpy = 30.70101 Njm?

Cpay = 7.510210° Njm?
p = 89000 kg/m?

(5.3

Figure (5.37) shows the z and r direction displacements respectively at ¢ =18 us for
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Figure 5.33a: Undamped axisymmetric U, surface plot, f=5 MHz t=1.0 ps

Figure 5.33b: Damped axisymmetric U, surface plot, f=5 MHz t=1.0 us
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Figure 5.34a: Undamped axisymmetric U, surface plot, f=5 MHz t=20 ps
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Figure 5.34b: Damped axisymmetric U, surface plot, f=5 MHz t=20 ps
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Figure 5.352: Undamped axisymmetric U, surface plot, f=5 MHz t=3.0 ps

Figure 5.35b: Damped axisymmetric U, surface plot, f=5 MHz ¢=3.0 us
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Figure 5.36a: Undamped axisymmetric U, surface plot, f=5MHz t=40 ps

Figure 5.36b: Damped axisynmetric U, surface plot, f=5 MHz (=4.0 ps
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Figure 5.37a: U, surface plot for transversely isotropic Cobalt, f=5 MHz t=18 pus

Figure 5.37b: U, surface plot for transversely isotropic Cobalt, f=5 MHz t=18 us
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a point source with a S MHz signal. C,,, in the Courant constraint is C, = 4 5:—' The
results are the same as those published [11). The anisotropic analysis introduces more

error into the solution because the wave velocity is now direction dependent. As a
result, the Courant constraint varies with direction introducing even more complicated

dispersive mesh properties.
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BONDING DATA EMPLOYING CHIRP-Z TRANSFORM

AND ADAPTIVE FILTERING TECHNIQUES
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INTRODUCTION

Adhesive bonding has found extensive application in the aircraft and defense
industries where the failure of a bond in any of the critical load-bearing
components, for example the rotor-blade of an helicopter, can bring about a
catastrophic failure. Nondestructive evaluation of adhesively bonded structures
attempt to assess the key factors of bond strength and quality. The bond strength
[1] is primarily determined by the thickness of the bondline, as this greatly affects
the stored energy in the bond. Three factors, if determined, provide a good measure
of bond quality. They are bond thickness, contact angle of adhesive to substrate,
and substrate surface-free energy.

The objective this paper sets out to achieve is a merns of accurately
determining the thickness of a bond layer. Digital signal processing is used to
analyze the reflected/transmitted data. Both the time domain and frequency
domain approaches are investigated. In the frequency domain the Chirp-Z
transform [2},[5] is employed to perform the spectral analysis of the received signal.
Based on the resonance efiect of the bondline the dips in the observed transducer

frequency spectra can be correlated to the thickness of the bond. This topic is
further discussed in references [6] and [7].

As an alternative, time domain analysis of the reflected signal consists of
modeling the bonded structure as an adaptive filter [3], with the taps being
representative of the adhesive layer. This technique is used to provide a deconvolved
bondline response. Adaptive filters have found wide use in adaptive modeling and
system identification in which the unknown system is described by its input-output
behavior. The adaptive filter then tries to emulate the system response due to a
known input. In its application to deconvolution, the effect of undesired medium
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Figure 1: Generic configuration used for the experiments
a. Transducer in pulse echo mode
b. Substrate layers
c. Copper wire spacers
d. Adhesive layer (Gel)

influence on the signal is sought to be negated. Here the medium which affects the
bond-line response can be considered as the cumulative effect of the substrates, the
transducer itself and the associated hardware that make up the entire experimental

arrangement.
EXPERIMENTAL ARRANGEMENT

The experimental arrangement for this research required the assembly of
bonded structures of predetermined thicknesses, as shown in Figure 1. The
substrate layers b, are optical glass flats of precisely measured thickness. They are
approximately isotropic in nature with known material constants. Knowledge of
material parameters, like the density and the longitudinal velocity of sound in each
of the three layers is essential in determining the thickness of the adhesive layer.
The adhesive layer d, is simulated by a viscous gel of known material properties. To
corroborate the predictions obtained, copper wires ¢, of known diameters were
placed as spacers in between the substrates. The contact transducer (0.25 inch
aperture) placement a, is generally in the Pulse Echo (P.E) mode , with a chosen
range of center frequencies between 5-20 MHz.

i - Floppy drive

ulser/Receiver

Digitizing Oscilloscope

Personal Computer

Transducer

1

Figure 2: Experimental Arrangement
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ADAPTIVE FILTERING APPROACH

Adaptive filters are based mainly on three different approaches: the Wiener
Filter Theory, the Kalman Filter Theory , and the classical method of least squares.
Since the Wiener and Kalman filters involve a stochastic formulation the
deterministic least squares approach is chosen. This method requires minimizing an
index of performance related to the error. The ersor is defined as the difference
betwcen the desired response and the actual filter output. Three different classes of
algorithms form the basis of the metiod of least squares. They are recursive least
squares, least-squares lattice algorittm, and the QR decomposition least squares
algorithm. In this paper the recurs:ve least-squares algorithm forms the basis of the
deconvolution technique.

RECURSIVE LEAST SQUARES ALGORITHM

The structural basis of the recursive least squares (RLS) algorithm is
transversal filter illustrated in Figure 3, where u(n) represents the input to the
filter, d(n) represents the desirsd response, d(n) is the output of the filter, and e(n)
is referred to as the estimation error. The RLS algorithm starts by defining a
correlation matrix $(n) such that

&(n) = Y A"u(i)u’(i) where 0< A1 <1 (1)
=1
here A"~* is an exponentia weighting factor, or memory factor. The deterministic
normal equation is defined as

B(n)W(n) = On) @)

with W(n) deing the optimum value of the tap-weight vector for which the index of

perforraance attains its minimum value. In equation (2) ©(n) is the deterministic

cross-correlation vector defined as
n

O(n) = Y A"u(i)d(i) 3)

=1
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The index of performance £, sought to be minimized in this case is

En) = i;x'--‘le(e)l’ @)

with

(i) = d(i)—-wT(n)uli) (5)

Rephrasing equation (2) we can get an expression for the optimal tap-weight
vector as

W(n) = #7}(n)O(n) (6)

The above equation involves the inversion of an M-by-M matrix which is
accomplished by employing the Woodbury [3] matrix inversion lemma.

APPLICATION TO BONDED STRUCTURES

Figure 4a illustrates the P.E test of a triple layered medium. The reflected signal
d(t) is interpreted to be the convolution of the signal u(t) taken from a single layer
of substrate material as shown in Figure 4b, and the adhesive layer, represented as a
transfer function k(t) of Figure 4c. The signal u(t) can be considered to have all the
external influences sought to be negated from the bondline response. Referring to
Figure 3, it can be seen that here the input to the adaptive filter would be u(t) and
the desired response to which u(t) is adapted, is d(t). On convergence the filter taps
are then representative of the bondline transfer function A(t).

™
7

S S K By
R At e

o 68 RS
R L e prs

Figure 4: a.Signal from bonded structure d(t) = u(t) = h(t)
b.Signal from single layer of substrate material u(t)
c.Bondline transfer function A(t)
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RESULTS

The case study presented here deconvolves the bondline transfer function of a
simulated bond of a measured thickness of 117.6 pm. The adaptive filter set up has
256 taps. The input signal u(t) consists of 512 samples, and the desired response

d(t) also has 512 samples, u(t) is delayed by 256 samples to improve performance of
the filter [4].
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Figure 5: Process of Adaptation
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Figure 5 describes the details of the process of adaptation. In this figure ¢(n)
shows the error signals at each iteration which describe the convergence of the filter.
When the a priori error and the a posteriori error have the same value, the filter
has converged to its optimum tap weight vector. The signal d.(n) describes the
predicted output which closely matches d(n). The filter taps on convergence
represent the adhesive layer transfer function depicted in Figure 6a. This transfer
function is then convolved with an idealized transducer signal having a Gaussian
frequency response centered at 10 MHz, shown in Figure 6b.

The result of the convolution is shown in Figure 7a in the time domain. Figure
b illustrates the frequency domain response of this signal. When the frequency
spectrum of the experimentally obtained signal d(n) is overlaid, it can be seen that
location of the nulls in either case are in close alignment.
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Figure 6: a. Filter taps representing h(n)
b. Idealized 10 MHz transducer signal RCos(n)
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Figure 7: a.Time domain response of RCos(n) » h(n)
b.Frequency domain response of RCos(n) * h(n)

Finally in order to validate the deconvolution model presented here, u(n) and
k(n) are convolved and the results compared with d(n). Figure 8a is the time
domain response of this convolution which compares favorably with d(n) shown in
Figure 5. The comparison in the frequency domain of the signals u(n) s h(n) and
d(n) is shown in Figure 8b. As can be seen there is an almost one to one

correspondence.
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Figure 8 a.Time domain response of u(n) « h(n)
b.Frequency domain response of u(n) « h(n)
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CONCLUSION

This paper discusses the precise thickness measurement of thin adhesive layers
by employing a method of deconvolving bondline response. For the thickness
measurement a physical model was developed, to which a frequency domain analysis
can be applied. Successful measurement of thin layers based on this frequency
domain model has been demonstrated [6],{7]. To deconvolve the adhesive layer
response a transfer function model is developed based on adaptive filters. The
deconvolved bondline transfer function is obtained, and compared to experimentally
recorded signzls. These comparisons show excellent agreement.

The application of this technique to realistic bonding configurations is one of
the future goals. Identification of broad band signals to replace the simulated
transducer signal, would provide a better frequency evaluation of the bondline
transfer function. Future work may also entail applying the transfer function model
to pattern recogpition schemes.

REFERENCES

1 G.M.Light, H. Kwun, “NONDESTRUCTIVE EVALUATION OF ADEESIVE
BOND QUALITY", STATE-OF-THE.-ART REVIEW - SwRI Project
17-7958-888 ,Southwest Research Institute, San Auatonio, TX, June 1989.

2 Alan V. Oppenheim and Ronald W. Sch&fer, Digital Signal Processing ,
Prentice-Hall, Inc., Englewood Clifs, New Jersey, 1975.

3 Simon Haykin, Adaptive Filter Theory , Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1986.

4 Bernard Widrow and Samuel D. Stearns, Adaptive Signal Processing , Preatice
Hall, Inc., Englewood Cliffs, New Jersey, 1985.

5 Lawrence R. Rabiner and Bernard Gold, “Theory and Application of Digital
Signal Processing”, Prentice Hall, Inc., Englewood Clifls, New Jersey, 1975.

6 V. K. Nair, R. Ludwig, R Anastasi, “The Chirp Z-Transform Applied to
Adhesively Bonded Structures”, IEEE Transactions on Instrumentation and
Measur~ments, Vol. 40, NO. 4, pp 751-758, August 1991.

7 Nair V. K. “Nondestructive Evaluation of Adhesive Ronds™, M.S Thesis, 1991,
Worcester Polytechnic Institute, Worcester MA.

ACKNOWLEDGEMENT

This work was sponsored, in part, by the U. S. Army Materials Technologv
Laboratory, Watertown, MA (Reference # DAAL04-90-C-0024).

80




APPENDIX A

The elastic constitutive matrices for isotropic materials in terms of Lamé’s constants
are shown in the index contracted fcrms of the stress strain relations for plane strain
in equation (A.1) and for axisymmetry in equatio: (A.2).

O A+2 H A 0] |°=
ot =| 4 A+2p 0]{e, A.
I5) 0 0 24] s,

() ) [ )
Iz| [1+2u 24 A 0][(%=
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